Ciencia de datos TI Powerpoint Powerpoint Presentation
La ciencia de datos es un área de estudio que combina la experiencia en el dominio, las habilidades informáticas y la comprensión matemática y estadística para extraer información valiosa de los datos. Tome nuestra plantilla de TI de ciencia de datos diseñada con perspicacia que será de gran ayuda para que las empresas presenten una descripción general de su escenario actual y evalúen la necesidad de adoptar la ciencia de datos. Además, este módulo de ciencia de datos muestra el análisis de brechas de la empresa y la introducción de la ciencia de datos. Además, contiene información sobre los requisitos de la adopción de la ciencia de datos, el ciclo de vida y las fases de la ciencia de datos y los componentes críticos de la ciencia de datos. Además, esta plantilla de minería de datos incluye herramientas de ciencia de datos como SAS, Apache Spark, Excel, Tableau, NLP y TensorFlow, junto con este papel de la ciencia de datos en la toma de decisiones. Además, este módulo destaca la diferencia entre la ciencia de datos y otras herramientas, el flujo de trabajo de la ciencia de datos, los roles laborales en la ciencia de datos y las principales aplicaciones de ciencia de datos, como atención médica, logística, finanzas, aerolíneas y negocios. Por último, esta plantilla consta de una lista de verificación, un cronograma, una hoja de ruta, un plan de 30-60-90 días, un tablero y los impactos de la integración de la ciencia de datos en la organización. Obtenga acceso a la plantilla ahora.
You must be logged in to download this presentation.
audience
Editable
of Time
Características de estas diapositivas de presentación de PowerPoint:
Entregue un PPT informativo sobre varios temas mediante el uso de estas diapositivas de presentación de Powerpoint de TI de ciencia de datos. Esta plataforma se enfoca e implementa las mejores prácticas de la industria, proporcionando así una vista panorámica del tema. Con setenta y ocho diapositivas, diseñadas con imágenes y gráficos de alta calidad, esta plataforma es un paquete completo para usar y descargar. Todas las diapositivas que se ofrecen en este mazo están sujetas a innumerables alteraciones, lo que lo convierte en un profesional en la entrega y la educación. Puede modificar el color de los gráficos, el fondo o cualquier otra cosa según sus necesidades y requisitos. Se adapta a todos los negocios verticales debido a su diseño adaptable.
People who downloaded this PowerPoint presentation also viewed the following :
Contenido de esta presentación de Powerpoint
Diapositiva 1 : esta diapositiva presenta la ciencia de datos. Indique el nombre de su empresa y comience.
Diapositiva 2 : Esta es una diapositiva de Agenda. Indique sus agendas aquí.
Diapositiva 3 : esta diapositiva muestra la tabla de contenido de la presentación.
Diapositiva 4 : esta es otra diapositiva que continúa con la tabla de contenido de la presentación.
Diapositiva 5 : Esta es otra diapositiva que continúa con la Tabla de contenido de la presentación.
Diapositiva 6 : Esta diapositiva presenta la situación actual de nuestro negocio al mostrar la proporción de datos estructurados y no estructurados almacenados en la base de datos.
Diapositiva 7 : Esta diapositiva muestra cómo los datos no estructurados están causando desafíos y cómo la ciencia de datos ayudará a brindar soluciones.
Diapositiva 8 : esta diapositiva muestra la tabla de contenido de la presentación.
Diapositiva 9 : Esta diapositiva representa la necesidad de la ciencia de datos en la organización.
Diapositiva 10 : esta diapositiva muestra los beneficios de la ciencia de datos para la organización.
Diapositiva 11 : esta diapositiva presenta el papel de la ciencia de datos en la toma de decisiones e incluye la recopilación y adquisición, el almacenamiento, la limpieza de datos, etc.
Diapositiva 12 : esta diapositiva muestra la tabla de contenido de la presentación.
Diapositiva 13 : esta diapositiva muestra los requisitos previos para la ciencia de datos que incluyen conocimiento de aprendizaje automático, modelado, estadística, base de datos y lenguajes de programación.
Diapositiva 14 : esta diapositiva representa las habilidades que el científico de datos debe tener antes de implementar la ciencia de datos.
Diapositiva 15 : esta es otra diapositiva que muestra que el científico de datos debe tener habilidades antes de implementar la ciencia de datos.
Diapositiva 16 : Esta diapositiva presenta la tabla de contenido de la presentación.
Diapositiva 17 : Esta diapositiva describe el ciclo de vida de la ciencia de datos, que incluye etapas como problemas comerciales predefinidos, adquisición de información, etc.
Diapositiva 18 : esta diapositiva muestra la primera fase de la ciencia de datos que consiste en comprender los problemas comerciales y los hechos que se incluyen en esta fase.
Diapositiva 19 : esta diapositiva representa la fase de preparación de datos de la ciencia de datos, incluidas sus diversas etapas, como datos sin procesar, datos estructurados, preprocesamiento de datos, EDA, etc.
Diapositiva 20 : esta diapositiva muestra la adquisición de información en la fase de preparación de datos.
Diapositiva 21 : Esta diapositiva presenta la fase de planificación del modelo en la ciencia de datos y muestra sus herramientas, como SQL Analysis Service, R y SAS/ACCESS.
Diapositiva 22 : esta diapositiva muestra el análisis exploratorio de datos en la fase de planificación del modelo de la ciencia de datos y sus diversas etapas y razones.
Diapositiva 23 : esta diapositiva muestra varias herramientas que podrían ayudar en el modelado de datos, como SAS Enterprise Miner, SPCS Modeler, MATLAB, etc.
Diapositiva 24 : esta diapositiva representa la fase operativa de la ciencia de datos y las tareas que se realizan en esta fase.
Diapositiva 25 : Esta diapositiva muestra la última fase de la ciencia de datos y en esta fase, todos los hallazgos clave se comunican a las partes interesadas.
Diapositiva 26 : Esta diapositiva presenta cómo los científicos de datos a lo largo del proyecto gestionan los datos hasta su finalización.
Diapositiva 27 : esta diapositiva muestra la tabla de contenido de la presentación.
Diapositiva 28 : esta diapositiva muestra las principales herramientas que se utilizan en la ciencia de datos, que incluyen SAS, Apache Spark, Excel, etc.
Diapositiva 29 : esta diapositiva representa el sistema de análisis estadístico utilizado en la ciencia de datos para la gestión y el modelado de datos.
Diapositiva 30 : esta diapositiva muestra la herramienta Apache Spark utilizada en la ciencia de datos y sus funciones, como velocidad, reutilización, análisis avanzado, etc.
Diapositiva 31 : esta diapositiva presenta la herramienta de Excel utilizada en la ciencia de datos y su uso junto con sus características.
Diapositiva 32 : esta diapositiva muestra la herramienta utilizada en la ciencia de datos y sus características, como vistas de licencias, suscripción de otros, etc.
Diapositiva 33 : esta diapositiva muestra Herramientas para la ciencia de datos: kit de herramientas de lenguaje natural (NLTK).
Diapositiva 34 : esta diapositiva representa la herramienta TensorFlow utilizada en Data Science, y sus características incluyen flexibilidad, columnas, visualizador, etc.
Diapositiva 35 : esta diapositiva muestra la tabla de contenido de la presentación.
Diapositiva 36 : Esta diapositiva presenta la diferencia entre la ciencia de datos y el análisis de datos según el conjunto de habilidades, el alcance, la exploración y los objetivos.
Diapositiva 37 : Esta diapositiva muestra la diferencia entre Business Intelligence y Data Science en función de factores como el concepto, el alcance, los datos, etc.
Diapositiva 38 : esta diapositiva muestra la tabla de contenido de la presentación.
Diapositiva 39 : Esta diapositiva representa las tareas realizadas por el analista comercial y cómo será útil para mejorar las operaciones comerciales.
Diapositiva 40 : esta diapositiva muestra las responsabilidades y habilidades que deben poseer los ingenieros de datos.
Diapositiva 41 : esta diapositiva presenta las tareas realizadas por un administrador de base de datos y las habilidades que debe poseer.
Diapositiva 42 : esta diapositiva muestra las tareas y habilidades del ingeniero de aprendizaje automático, incluido un conocimiento profundo del aprendizaje automático, los algoritmos de ML y Python y C++.
Diapositiva 43 : esta diapositiva muestra las tareas realizadas por los científicos de datos en ciencia de datos y sus habilidades.
Diapositiva 44 : esta diapositiva representa los diferentes tipos de científicos de datos, incluidos los expertos verticales, los gerentes de DS estadísticos, los generalistas, etc.
Diapositiva 45 : Esta diapositiva muestra las tareas del arquitecto de datos en proyectos de ciencia de datos y sus habilidades.
Diapositiva 46 : Esta diapositiva presenta las tareas realizadas por un estadístico en ciencia de datos y sus habilidades, como minería de datos, computación distributiva, etc.
Diapositiva 47 : Esta diapositiva muestra las tareas realizadas por el analista comercial y cómo será útil para mejorar las operaciones comerciales.
Diapositiva 48 : esta diapositiva muestra las tareas realizadas por un administrador de datos y análisis y las habilidades que debe tener.
Diapositiva 49 : esta diapositiva representa la matriz RACI para la ciencia de datos y las tareas realizadas por analistas de datos, ingenieros de datos, científicos de datos, etc.
Diapositiva 50 : esta diapositiva muestra la tabla de contenido que destaca la lista de verificación para la integración eficaz de la ciencia de datos en los negocios.
Diapositiva 51 : Esta diapositiva presenta la Lista de verificación para la integración eficaz de la ciencia de datos en los negocios.
Diapositiva 52 : esta diapositiva muestra la tabla de contenido que destaca el cronograma para la implementación de la ciencia de datos en la organización.
Diapositiva 53 : esta diapositiva muestra la tabla de contenido que destaca el cronograma para la implementación de la ciencia de datos en la organización.
Diapositiva 54 : esta diapositiva representa la tabla de contenido que destaca la hoja de ruta para integrar la ciencia de datos en la organización.
Diapositiva 55 : esta diapositiva muestra la hoja de ruta para integrar la ciencia de datos en la organización.
Diapositiva 56 : Esta diapositiva presenta la tabla de contenido que destaca el plan de 30-60-90 días para la implementación de la ciencia de datos.
Diapositiva 57 : esta diapositiva muestra un plan de 30-60-90 días para la implementación de la ciencia de datos.
Diapositiva 58 : esta diapositiva muestra el panel para la implementación de la ciencia de datos.
Diapositiva 59 : esta diapositiva representa el tablero para la integración de datos en el negocio y muestra detalles en tiempo real sobre gastos, ganancias, porcentaje de márgenes, etc.
Diapositiva 60 : esta diapositiva muestra la tabla de contenido que destaca los impactos de la integración de la ciencia de datos en la organización.
Diapositiva 61 : Esta diapositiva presenta los impactos de la integración de la ciencia de datos en la organización.
Diapositiva 62 : esta diapositiva muestra la tabla de contenido de la presentación.
Diapositiva 63 : esta diapositiva muestra los dominios en los que la ciencia de datos crea su impresión.
Diapositiva 64 : esta diapositiva representa la ciencia de datos en los departamentos de atención médica y sus beneficios de diferentes maneras.
Diapositiva 65 : esta diapositiva muestra la ciencia de datos en el departamento de logística y transporte.
Diapositiva 66 : Esta diapositiva presenta el papel de la ciencia de datos en las aerolíneas y sus beneficios que cubren la gestión de ingresos y la planificación de rutas.
Diapositiva 67 : Esta diapositiva muestra la aplicación de la ciencia de datos en organizaciones financieras y sus beneficios.
Diapositiva 68 : esta diapositiva muestra la aplicación de la ciencia de datos en los negocios y sus beneficios.
Diapositiva 69 : esta diapositiva representa la tabla de contenido de la presentación.
Diapositiva 70 : Esta diapositiva muestra el significado de la ciencia de datos y cómo esta innovación es útil en las empresas que desarrollan sistemas de IA.
Diapositiva 71 : esta diapositiva presenta componentes críticos de la ciencia de datos, como datos, programación, estadísticas y probabilidad, etc.
Diapositiva 72 : esta diapositiva muestra iconos para Mood Board para Data Science.
Diapositiva 73 : Esta diapositiva se titula Diapositivas adicionales para avanzar.
Diapositiva 74 : Esta es la diapositiva Acerca de nosotros para mostrar las especificaciones de la empresa, etc.
Diapositiva 75 : Esta es la diapositiva Nuestra misión con imágenes y texto relacionados.
Diapositiva 76 : Esta diapositiva presenta el diagrama de Venn con cuadros de texto.
Diapositiva 77 : Esta es una diapositiva de la línea de tiempo. Mostrar datos relacionados con los intervalos de tiempo aquí.
Diapositiva 78 : Esta es una diapositiva de agradecimiento con dirección, números de contacto y dirección de correo electrónico.
Data Science IT Powerpoint Presentación de Powerpoint con las 78 diapositivas:
Utilice nuestra presentación Powerpoint Powerpoint de TI de ciencia de datos para ayudarlo a ahorrar su valioso tiempo de manera efectiva. Están listos para encajar en cualquier estructura de presentación.
FAQs
Data science is an interdisciplinary field that involves using statistical and computational methods to extract insights and knowledge from data. It is important for businesses because it enables them to make better decisions, improve efficiency, and identify new opportunities for growth.
The benefits of data science for businesses include improved decision-making, increased efficiency, reduced costs, better customer engagement, and the ability to identify new opportunities for growth.
The key skills required for a career in data science include proficiency in programming languages like Python and R, knowledge of statistical analysis and machine learning algorithms, expertise in data visualization and communication, and strong problem-solving and critical thinking skills.
Data science and data analytics are similar but distinct fields. Data science involves using statistical and computational methods to extract insights and knowledge from data, while data analytics focuses on using data to inform business decisions and solve specific problems.
Unstructured data such as images, videos, text, and social media posts are difficult to analyze, and traditional methods fail to provide accurate results. Data science helps to address these challenges by using machine learning, data modeling, and statistical techniques to extract meaningful insights from unstructured data.
-
Designs have enough space to add content.
-
Topic best represented with attractive design.
-
Great quality product.
-
Awesome use of colors and designs in product templates.