Data Science IT Powerpoint Powerpoint-Präsentation
Data Science ist ein Studienbereich, der Domänenerfahrung, Computerkenntnisse sowie mathematisches und statistisches Verständnis kombiniert, um wertvolle Erkenntnisse aus Daten zu extrahieren. Holen Sie sich unsere aufschlussreiche IT-Vorlage für Data Science, die Unternehmen eine große Hilfe sein wird, um einen Überblick über ihr aktuelles Szenario zu geben und die Notwendigkeit der Einführung von Data Science zu bewerten. Darüber hinaus zeigt dieses Data-Science-Modul die Gap-Analyse des Unternehmens und die Einführung von Data Science. Darüber hinaus enthält es Informationen zu den Anforderungen der Einführung von Data Science, Lebenszyklus und Phasen von Data Science sowie zu kritischen Komponenten von Data Science. Darüber hinaus enthält diese Data-Mining-Vorlage die Data-Science-Tools wie SAS, Apache Spark, Excel, Tableau, NLP und TensorFlow sowie diese Rolle der Data Science bei der Entscheidungsfindung. Darüber hinaus hebt dieses Modul den Unterschied zwischen Data Science und anderen Tools, Data Science-Workflows, Berufsrollen in Data Science und Top-Data-Science-Anwendungen wie Gesundheitswesen, Logistik, Finanzen, Fluggesellschaften und Unternehmen hervor. Schließlich umfasst diese Vorlage eine Checkliste, einen Zeitplan, eine Roadmap, einen 30-60-90-Tage-Plan, ein Dashboard und die Auswirkungen der Data-Science-Integration auf die Organisation. Erhalten Sie jetzt Zugriff auf die Vorlage.
You must be logged in to download this presentation.
audience
Editable
of Time
Merkmale dieser PowerPoint-Präsentationsfolien :
Stellen Sie eine informative PPT zu verschiedenen Themen bereit, indem Sie diese Powerpoint-Präsentationsfolien für Data Science IT verwenden. Dieses Deck fokussiert und implementiert bewährte Branchenpraktiken und bietet so einen Überblick über das Thema aus der Vogelperspektive. Umfasst von achtundsiebzig Folien, die mit hochwertigen Bildern und Grafiken gestaltet wurden, ist dieses Deck ein komplettes Paket zum Verwenden und Herunterladen. Alle Folien, die in diesem Deck angeboten werden, unterliegen unzähligen Änderungen und machen Sie so zu einem Profi im Liefern und Erziehen. Sie können die Farbe der Grafik, des Hintergrunds oder alles andere nach Ihren Bedürfnissen und Anforderungen ändern. Aufgrund seines anpassbaren Layouts eignet es sich für jede Branche.
People who downloaded this PowerPoint presentation also viewed the following :
Inhalt dieser Powerpoint-Präsentation
Folie 1 : Diese Folie stellt Data Science vor. Geben Sie Ihren Firmennamen an und beginnen Sie.
Folie 2 : Dies ist eine Agenda-Folie. Geben Sie hier Ihre Agenden an.
Folie 3 : Diese Folie zeigt das Inhaltsverzeichnis der Präsentation.
Folie 4 : Dies ist eine weitere Folie, die das Inhaltsverzeichnis der Präsentation fortsetzt.
Folie 5 : Dies ist eine weitere Folie, die das Inhaltsverzeichnis der Präsentation fortsetzt.
Folie 6 : Diese Folie stellt die aktuelle Situation unseres Unternehmens dar, indem das Verhältnis von unstrukturierten und strukturierten Daten, die in der Datenbank gespeichert sind, angezeigt wird.
Folie 7 : Diese Folie zeigt, wie unstrukturierte Daten zu Herausforderungen führen und wie Data Science zur Bereitstellung von Lösungen beitragen kann.
Folie 8 : Diese Folie zeigt das Inhaltsverzeichnis für die Präsentation.
Folie 9 : Diese Folie repräsentiert den Bedarf an Data Science in der Organisation.
Folie 10 : Diese Folie zeigt die Vorteile von Data Science für die Organisation.
Folie 11 : Diese Folie stellt die Rolle der Datenwissenschaft bei der Entscheidungsfindung dar und umfasst die Erfassung und Erfassung, Speicherung, Bereinigung von Daten usw.
Folie 12 : Diese Folie zeigt das Inhaltsverzeichnis der Präsentation.
Folie 13 : Diese Folie zeigt die Voraussetzungen für Data Science, die Kenntnisse in maschinellem Lernen, Modellierung, Statistik, Datenbanken und Programmiersprachen umfassen.
Folie 14 : Diese Folie stellt dar, welche Fähigkeiten ein Datenwissenschaftler haben muss, bevor er Data Science implementiert.
Folie 15 : Dies ist eine weitere Folie, die zeigt, dass Data Scientists über Fähigkeiten verfügen müssen, bevor sie Data Science implementieren.
Folie 16 : Diese Folie zeigt das Inhaltsverzeichnis für die Präsentation.
Folie 17 : Diese Folie beschreibt den Lebenszyklus der Datenwissenschaft, der die Phasen wie vordefinierte Geschäftsprobleme, Informationsbeschaffung usw. umfasst.
Folie 18 : Diese Folie zeigt die erste Phase der Datenwissenschaft, bei der es darum geht, Geschäftsprobleme und die Fakten, die in diese Phase fallen, zu verstehen.
Folie 19 : Diese Folie stellt die Datenvorbereitungsphase der Datenwissenschaft dar, einschließlich ihrer verschiedenen Phasen wie Rohdaten, Strukturdaten, Datenvorverarbeitung, EDA usw.
Folie 20 : Diese Folie zeigt die Informationserfassung in der Datenvorbereitungsphase.
Folie 21 : Diese Folie stellt die Modellplanungsphase in Data Science vor und zeigt ihre Tools wie SQL Analysis Service, R und SAS/ACCESS.
Folie 22 : Diese Folie zeigt die explorative Datenanalyse in der Modellplanungsphase von Data Science und ihre verschiedenen Stadien und Gründe.
Folie 23 : Diese Folie zeigt verschiedene Tools, die bei der Datenmodellierung helfen könnten, wie SAS Enterprise Miner, SPCS Modeler, MATLAB usw.
Folie 24 : Diese Folie stellt die Betriebsphase der Datenwissenschaft dar und welche Aufgaben in dieser Phase ausgeführt werden.
Folie 25 : Diese Folie zeigt die letzte Phase der Datenwissenschaft und in dieser Phase werden alle wichtigen Ergebnisse den Interessengruppen mitgeteilt.
Folie 26 : Diese Folie zeigt, wie Datenwissenschaftler während des gesamten Projekts Daten bis zum Abschluss verwalten.
Folie 27 : Diese Folie zeigt das Inhaltsverzeichnis der Präsentation.
Folie 28 : Diese Folie zeigt die wichtigsten Tools, die in der Datenwissenschaft verwendet werden, darunter SAS, Apache Spark, Excel usw.
Folie 29 : Diese Folie stellt ein statistisches Analysesystem dar, das in der Datenwissenschaft für die Datenverwaltung und -modellierung verwendet wird.
Folie 30 : Diese Folie zeigt das in der Datenwissenschaft verwendete Apache Spark-Tool und seine Funktionen wie Geschwindigkeit, Wiederverwendbarkeit, erweiterte Analysen usw.
Folie 31 : Diese Folie präsentiert das in der Datenwissenschaft verwendete Excel-Tool und seine Verwendung sowie seine Funktionen.
Folie 32 : Diese Folie zeigt ein in der Datenwissenschaft verwendetes Tool und seine Funktionen wie die Lizenzierung von Ansichten, das Abonnement anderer usw.
Folie 33 : Diese Folie zeigt Tools for Data Science – Natural Language Toolkit (NLTK).
Folie 34 : Diese Folie stellt das TensorFlow-Tool dar, das in Data Science verwendet wird, und seine Funktionen umfassen Flexibilität, Spalten, Visualizer usw.
Folie 35 : Diese Folie zeigt das Inhaltsverzeichnis der Präsentation.
Folie 36 : Diese Folie zeigt den Unterschied zwischen Datenwissenschaft und Datenanalyse basierend auf Fähigkeiten, Umfang, Erkundung und Zielen.
Folie 37 : Diese Folie zeigt den Unterschied zwischen Business Intelligence und Data Science basierend auf Faktoren wie Konzept, Umfang, Daten usw.
Folie 38 : Diese Folie zeigt das Inhaltsverzeichnis für die Präsentation.
Folie 39 : Diese Folie stellt Aufgaben dar, die vom Business Analyst ausgeführt werden, und wie er bei der Verbesserung des Geschäftsbetriebs hilfreich sein wird.
Folie 40 : Diese Folie zeigt die Verantwortlichkeiten und Fähigkeiten von Dateningenieuren, die sie besitzen sollten.
Folie 41 : Diese Folie stellt Aufgaben vor, die von einem Datenbankadministrator ausgeführt werden, und Fähigkeiten, die er besitzen sollte.
Folie 42 : Diese Folie zeigt die Aufgaben und Fähigkeiten des Machine Learning Engineers, einschließlich fundierter Kenntnisse über maschinelles Lernen, ML-Algorithmen sowie Python und C++.
Folie 43 : Diese Folie zeigt die Aufgaben von Data Scientists in Data Science und ihre Fähigkeiten.
Folie 44 : Diese Folie stellt die verschiedenen Arten von Datenwissenschaftlern dar, darunter Branchenexperten, Statistik-DS-Manager, Generalisten usw.
Folie 45 : Diese Folie zeigt die Aufgaben von Data Architects in Data-Science-Projekten und ihre Fähigkeiten.
Folie 46 : Diese Folie stellt Aufgaben vor, die von einem Statistiker in der Datenwissenschaft ausgeführt werden, und seine Fähigkeiten wie Data Mining, Distributive Computing usw.
Folie 47 : Diese Folie zeigt Aufgaben, die vom Business Analyst ausgeführt werden, und wie er bei der Verbesserung des Geschäftsbetriebs hilfreich sein wird.
Folie 48 : Diese Folie zeigt Aufgaben, die von einem Daten- und Analysemanager ausgeführt werden, und Fähigkeiten, über die er verfügen sollte.
Folie 49 : Diese Folie stellt die RACI-Matrix für Datenwissenschaft und Aufgaben dar, die von Datenanalysten, Dateningenieuren, Datenwissenschaftlern usw. ausgeführt werden.
Folie 50 : Diese Folie zeigt ein Inhaltsverzeichnis, das die Checkliste für eine effektive Integration von Data Science in Unternehmen hervorhebt.
Folie 51 : Diese Folie präsentiert eine Checkliste für eine effektive Integration von Data Science in Unternehmen.
Folie 52 : Diese Folie zeigt das Inhaltsverzeichnis, das den Zeitplan für die Implementierung von Data Science in der Organisation hervorhebt.
Folie 53 : Diese Folie zeigt ein Inhaltsverzeichnis, das den Zeitplan für die Implementierung von Data Science in der Organisation hervorhebt.
Folie 54 : Diese Folie stellt ein Inhaltsverzeichnis dar, das die Roadmap zur Integration von Data Science in die Organisation hervorhebt.
Folie 55 : Diese Folie zeigt den Fahrplan zur Integration von Data Science in die Organisation.
Folie 56 : Diese Folie zeigt das Inhaltsverzeichnis, das den 30-60-90-Tage-Plan für die Implementierung von Data Science hervorhebt.
Folie 57 : Diese Folie zeigt einen 30-60-90-Tage-Plan für die Implementierung von Data Science.
Folie 58 : Diese Folie zeigt das Dashboard für die Implementierung von Data Science.
Folie 59 : Diese Folie stellt ein Dashboard für die Datenintegration im Unternehmen dar und zeigt Echtzeitdetails zu Ausgaben, Gewinnen, Margenprozentsätzen usw.
Folie 60 : Diese Folie zeigt ein Inhaltsverzeichnis, das die Auswirkungen der Data Science-Integration in der Organisation hervorhebt.
Folie 61 : Diese Folie zeigt die Auswirkungen der Data Science-Integration in der Organisation.
Folie 62 : Diese Folie zeigt das Inhaltsverzeichnis der Präsentation.
Folie 63 : Diese Folie zeigt Bereiche, in denen Data Science Eindruck hinterlässt.
Folie 64 : Diese Folie stellt Data Science in Gesundheitsabteilungen und ihre Vorteile auf unterschiedliche Weise dar.
Folie 65 : Diese Folie zeigt Data Science in der Logistik- und Transportabteilung.
Folie 66 : Diese Folie stellt die Rolle der Datenwissenschaft in Fluggesellschaften und ihre Vorteile vor, die das Einnahmenmanagement und die Routenplanung abdecken.
Folie 67 : Diese Folie zeigt die Anwendung von Data Science in Finanzorganisationen und ihre Vorteile.
Folie 68 : Diese Folie zeigt die Anwendung von Data Science in der Wirtschaft und ihre Vorteile.
Folie 69 : Diese Folie stellt das Inhaltsverzeichnis für die Präsentation dar.
Folie 70 : Diese Folie zeigt die Bedeutung von Data Science und wie diese Innovation für Unternehmen hilfreich ist, die KI-Systeme entwickeln.
Folie 71 : Diese Folie präsentiert kritische Komponenten der Datenwissenschaft wie Daten, Programmierung, Statistik und Wahrscheinlichkeit usw.
Folie 72 : Diese Folie zeigt Symbole für das Mood Board für Data Science.
Folie 73 : Diese Folie trägt den Titel „Zusätzliche Folien“, um voranzukommen.
Folie 74 : Dies ist die Folie „Über uns“, um Unternehmensspezifikationen usw. anzuzeigen.
Folie 75 : Dies ist unsere Missionsfolie mit zugehörigen Bildern und Texten.
Folie 76 : Diese Folie zeigt ein Venn-Diagramm mit Textfeldern.
Folie 77 : Dies ist eine Timeline-Folie. Zeigen Sie hier Daten zu Zeitintervallen an.
Folie 78 : Dies ist eine Dankeschön-Folie mit Adresse, Kontaktnummern und E-Mail-Adresse.
Data Science IT Powerpoint Powerpoint-Präsentation mit allen 78 Folien:
Nutzen Sie unsere Data Science IT Powerpoint Powerpoint-Präsentation, um Ihre wertvolle Zeit effektiv zu sparen. Sie sind gebrauchsfertig und passen in jede Präsentationsstruktur.
FAQs
Data science is an interdisciplinary field that involves using statistical and computational methods to extract insights and knowledge from data. It is important for businesses because it enables them to make better decisions, improve efficiency, and identify new opportunities for growth.
The benefits of data science for businesses include improved decision-making, increased efficiency, reduced costs, better customer engagement, and the ability to identify new opportunities for growth.
The key skills required for a career in data science include proficiency in programming languages like Python and R, knowledge of statistical analysis and machine learning algorithms, expertise in data visualization and communication, and strong problem-solving and critical thinking skills.
Data science and data analytics are similar but distinct fields. Data science involves using statistical and computational methods to extract insights and knowledge from data, while data analytics focuses on using data to inform business decisions and solve specific problems.
Unstructured data such as images, videos, text, and social media posts are difficult to analyze, and traditional methods fail to provide accurate results. Data science helps to address these challenges by using machine learning, data modeling, and statistical techniques to extract meaningful insights from unstructured data.
-
Designs have enough space to add content.
-
Topic best represented with attractive design.
-
Great quality product.
-
Awesome use of colors and designs in product templates.